
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Generating Correctness Proofs with Neural Networks
Anonymous Author(s)

Abstract
Foundational verification allows programmers to build soft-
ware which has been empirically shown to have high levels
of assurance in a variety of important domains. However, the
cost of producing foundationally verified software remains
prohibitively high for most projects, as it requires significant
manual effort by highly trained experts. In this paper we
present Proverbot9001, a proof search system using machine
learning techniques to produce proofs of software correctness
in interactive theorem provers. We demonstrate Prover-
bot9001 on the proof obligations from a large practical proof
project, the CompCert verified C compiler, and show that it
can effectively automatewhatwere previouslymanual proofs,
automaticallyproducingproofs for28%of theoremstatements
in our test dataset, when combined with solver-based tooling.
Without any additional solvers, we exhibit a proof completion
rate that is a 4X improvement over prior state-of-the-art
machine learning models for generating proofs in Coq.

Keywords Machine-learning, Theorem proving

1 Introduction
Apromising approach to software verification is foundational
verification. In this approach, programmers use an interactive
theoremprover, such asCoq [13] or Isabelle/HOL [33], to state
and prove properties about their programs. Foundational
verification has shown increasing promise over the past two
decades; it has been used to prove properties of programs
in a variety of settings, including compilers [26], operating
systems [22], database systems [29], file systems [8],
distributed systems [37], and cryptographic primitives [3].
One of the main benefits of foundational verification is

that it provides high levels of assurance. The interactive
theorem prover makes sure that proofs of program properties
are done in full and complete detail, without any implicit
assumptions or forgotten proof obligations. Furthermore,
once a proof is completed, foundational proof assistants
can generate a representation of the proof in a foundational
logic; these proofs can be checked with a small kernel. In this
setting only the kernel needs to be trusted (as opposed to the
entire proof assistant), leading to a small trusted computing
base. As an example of this high-level of assurance, a study
of compilers [39] has shown that CompCert [26], a compiler
proved correct in the Coq proof assistant, is significantly
more robust than its non-verified counterparts.
Unfortunately, the benefits of foundational verification

come at a great cost. The process of performing proofs in a

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

proof assistant is extremely laborious. CompCert [26] took
6 person-years and 100,000 lines of Coq to write and verify,
and seL4 [22], which is a verified version of a 10,000 line
operating system, took 22 person-years to verify. The sort of
manual effort is one of the main impediments to the broader
adoption of proof assistants.
In this paper, we present Proverbot9001, a novel system

that uses machine learning to help alleviate the manual effort
required to complete proofs in an interactive theorem prover.
Proverbot9001 trains on existing proofs to learn models.
Proverbot9001 then incorporates these learned models in
a tree search process to complete proofs. The source of
Proverbot9001 is publicly available on GitHub 1.
The main contribution of this paper is bringing domain

knowledge to the feature engineering, model architecture,
and search procedures of machine-learning based systems
for interactive theorem proving. In particular, our work
distinguishes itself from prior work on machine learning for
proofs in three ways:

1. A two part tactic-predictionmodel, inwhich prediction
of tactic arguments is primary and informs prediction
of tactics themselves.

2. An argument prediction architecture which makes
use of recurrent neural networks over sequential
representations of terms.

3. Several effective tree pruning techniques inside of a
prediction-guided proof search.

We tested Proverbot9001 end-to-end by training on the
proofs from 162 files from CompCert, and testing on the
proofs from 13 files2. When combined with solver-based tool-
ing (which alone can only solve 7% of proofs), Proverbot9001
can automatically produce proofs for 28% of the theorem
statements in our test dataset (138/501). In our default
configuration without external solvers, Proverbot9001 solves
(produces a checkable proof for) 19.36% (97/501) of the proofs
in our test set, which is a nearly 4X improvement over the
previous state of the art system that attempts the same
task [38]. Ourmodel is able to reproduce the tactic name from
the solution 32% of the time; and when the tactic name is
correct, ourmodel is able to predict the solution argument 89%
of the time. We also show that Proverbot9001 can be trained
on one project and then effectively predict on another project.

1Link removed for double-blind review
2This training/test split comes from splitting the dataset 90/10, and then
removing from the test set files that don’t contain proofs.

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

SearchCoq Interface
Neural Network 

Prediction Model

Theorem To 

Prove

Proof

Proof States

Predictions

Commands

Proof States

Figure 1. The overall architecture of Proverbot9001, built
using CoqSerapi, Python, and PyTroch.

eval_mulhs

econstructor unfold binary_constructor_sound

eautosimpl try omega

eauto

intros simpl eauto

inv H

TrivialExists

QED

TrivialExistsinv H0

substeconstructor

Figure 2. A graph of a Proverbot9001 search. In green are
the tactics that formed part of the discovered solution, as well
as the lemma name and the QED. In orange are nodes that
resulted in a context that is at least as hard as one previously
found (see Section 6).

2 Overview
In this section, we’ll present Proverbot9001’s prediction and
search process with an example from CompCert. You can see
the top-level structure of Proverbot9001 in Figure 1.
Consider the following theorem from the CompCert

compiler:
Definition binary_constructor_sound

(cstr: expr -> expr -> expr)
(sem: val -> val -> val) : Prop :=

forall le a x b y,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
exists v, eval_expr ge sp e m le (cstr a b) v

/\ Val.lessdef (sem x y) v.

Theorem eval_mulhs:
binary_constructor_sound mulhs Val.mulhs.

Proof.
...

This theorem states that the mulhs expression constructor
is sound with respect to the specification Val.mulhs.
At the beginning of the proof of eval_mulhs, Prover-

bot9001 predicts three candidate tactics, econstructor,
eauto, and unfold binary_constructor_sound. Once

T Tactics
A Tactic arguments
C=T ×A Proof commands
I Identifiers
Q Propositions
G=Q Goals
H =I×Q Hypotheses
O= [H]×G Obligations
S= [O×[C]] Proof states

Figure 3. Formalism to model a Proof Assistant

these predictions are made, Proverbot9001 tries running all
three, which results in three new states of the proof assistant.
In each of these three states, Proverbot9001 again makes
predictions for what the most likely tactics are to apply
next. These repeated predictions create a search tree, which
Proverbot9001 explores in a depth first way. The proof com-
mand predictions that Proverbot9001 makes are ordered by
likelihood, and the search explores more likely branches first.
Figure 2 shows the resulting search tree for eval_mulhs.

The nodes in green are the nodes that produce the final proof.
Orange nodes are predictions that fail tomake progress on the
proof (see Section 6); these nodes are not expanded further.
All the white nodes to the right of the green path are not
explored, because the proof in the green path is found first.

3 Definitions
In the rest of the paper, we will describe the details of how
Proverbot9001 works. We start with a set of definitions that
will be used throughout. In particular, Figure 3 shows the
formalism we will use to represent the state of an in-progress
proof. A tactic 𝜏 ∈ T is a tactic name. An argument 𝑎 ∈ A
is a tactic argument. For simplicity of the formalism, we
assume that all tactics take zero or one arguments. We use
I for the set of Coq identifiers, and Q for the set of Coq
propositions. A proof state 𝜎 ∈ S is a state of the proof
assistant, which consists of a list of obligations along with
their proof command history. We use [𝑋 ] to denote the set of
lists of elements from𝑋 . An obligation is a pair of: (1) a set of
hypotheses (2) a goal to prove. A hypothesis is a proposition
named by an identifier, and a goal is a proposition.

4 Predicting a Single Proof Step
We start by explaining how we predict individual steps in
the proof. Once we have done this, we will explain howwe
use these proof command predictions to guide a proof search
procedure.
We define D[𝜏] to be a scoring function over 𝜏 , where

larger scores are preferred over smaller ones:

D[𝜏]=𝜏→R
2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Proverbot9001 Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

We define a 𝜏-predictor R[𝜏] to be a function that takes a
proof state 𝜎 ∈ S (i.e. a state of the proof assistant under
which we want to make a prediction) and returns a scoring
function over 𝜏 . In particular, we have:

R[𝜏]=S→D[𝜏]
Our main predictor 𝑃 will be a predictor of the next step in
the proof, i.e. a predictor for proof commands:

𝑃 :R[T ×A]
We divide our main predictor into two predictors, one for
tactics, and one for arguments:

𝑃tac :R[T ]
𝑃arg :T →R[A]

Our main predictor 𝑃 combines 𝑃tac and 𝑃arg as follows:
𝑃 (𝜎)=𝜆(𝜏,𝑎) . 𝑃tac (𝜎) (𝜏) ⊗ 𝑃arg (𝜏) (𝜎) (𝑎)

where ⊗ is an operator that combines the scores of the tactic
and the argument predictors. We now describe the three
parts of this prediction architecture in turn: 𝑃tac , 𝑃arg , and ⊗.

4.1 Predicting Tactics (𝑃tac)
To predict tactics, Proverbot9001 uses of a set of manually
engineered features to reflect important aspects of proof
prediction: (1) the head of the goal as an integer (2) the name
of the previously run tactic as an integer (3) a hypothesis that
is heuristically chosen (based on string similarity to goal) as
being the most relevant to the goal (4) the similarity score
of this most relevant hypothesis.
These features are embedded into a continuous vector of

128 floats using a standard word embedding, and then fed
into a fully connected feed-forward neural network (3 layers,
128 nodes-wide) with a softmax (normalizing) layer at the
end, to compute a probability distribution over possible tactic
names. This architecture is trained on 153402 samples with
a stochastic gradient descent optimizer.
The architecture of this model is shown in Figure 4. Blue

boxes represent input; purple boxes represent intermediate
encoded values; green boxes represent outputs; and gray
circles represent computations. The NN circle is the feed-
forward Neural Network mentioned above. The Enc circle
is a word embedding module.

4.2 Predicting Tactic Arguments (𝑃arg)
Once a tactic is predicted, Proverbot9001 next predicts
arguments. Recall that the argument predictor is a function
𝑃arg : R[A]. In contrast to previous work, our argument
model is a prediction architecture in its own right.
Proverbot9001 currently predicts zero or one tactic

arguments; However, since the most often-used multi-
argument Coq tactics can be desugared to sequences
of single argument tactics (for example “unfold a, b”
to “unfold a. unfold b.”), this limitation does not
significantly restrict our expressivity in practice.

NN

“apply”

Encode
Previous tactic

“forall”

“eq”

Goal head

Hypothesis head

Vectors of reals

Enc Distribution 

over tactics

Enc

Enc

Figure 4. Proverbot9001’s model for predicting tactics. Takes
as input three features for each data point: the previous tactic
run, the head token of the goal, and of the most relevant
hypothesis (see Section 4.1). We restrict the previous tactic
feature to the 50 most common tactics, and head tokens on
goal and hypothesis to the 100 most common head tokens.

Proverbot9001 makes three kinds of predictions for
arguments: goal-token arguments, hypothesis arguments,
lemma arguments:
Goal-token arguments are arguments that are a single

token in the goal; for instance, if the goal is not (eq x y), we
might predict unfold not, where not refers to the first token
in the goal. In the case of tactics like unfold and destruct,
the argument is often (though not always) a token in the goal.

Hypothesis arguments identifiers referring to a hypothesis
in context. For instance, if we have a hypothesis H in
context, with type is_path (cons (pair s d) m), we
might predict inversion H, where H refers to the hypothesis,
and inversion breaks it down. In the case of tactics like
inversion and destruct, the argument is often a hypothesis
identifier.
Finally, lemma arguments are identifiers referring to a

previously defined proof. These can be basic facts in the
standard library, like
plus_n_0 : forall n : nat, n = n + 0

or a lemma from the current project, such as the eval_mulhs
described in the overview. In Proverbot9001, lemmas are
considered from a subset of the possible lemma arguments
available in the global context, in order to make training
tractable. Proverbot9001 supports several different modes
for determining this subset; by default we consider lemmas
defined previously in the current file.
The architecture of the scoring functions for these

argument types is shown in Figure 5. One recurrent neural
network (RNN) is used to give scores to each hypothesis and
lemma by processing the type of the term, and outputting
a final score. A different RNN is then used to process the goal,
assigning a score to each token in processes.

4.3 Combining Tactic and Argument Scores (⊗)
The ⊗ operator attempts to provide a balanced combination
of tactic and argument prediction, taking both into account
even across different tactics. The operator works as follows.

3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

not ( eq x y )

y > ( x + 1 )

“unfold”

Tactic name
predicted by Ptac

Goal

Hypothesis/
Lemma

0

Constant

5.2

Hypothesis/Lemma 
Similarity Score

NN

Encoded Goal

60

8.22.13.09.2

8

1 3 4 29 5

Hypothesis/
Lemma 

Output Score

Token Output 
Scores

G G G G G G

G G G G G G

G G G G G G G

Figure 5. The model for scoring possible arguments.

We pick the 𝑛 highest-scoring tactics and for each tactic
the 𝑚 highest-scoring arguments. We then score each
proof command by multiplying the tactic score and the
argument score, without any normalization. Formally, we can
implement this approach by defining ⊗ to be multiplication,
and by not normalizing the probabilities produced by 𝑃arg
until all possibilities are considered together.

Because we don’t normalize the probabilities of tactics, the
potential arguments for a tactic are used in determining the
eligibility of the tactic itself (as long as that tactic is in the
top 𝑛). This forms one of the most important contributions of
our work: the argument selection is primary, with the tactic
prediction mostly serving to help prune it’s search space.

4.4 Putting it all together
The overall architecture that we have described is shown in
Figure 6. The𝑃tac predictor (whose detailed structure is shown
in Figure 4) computes a distribution over tactic using three
features as input: the previous tactic, head constructor of goal,
and head constructor of the hypothesis deemedmost relevant.
Then, for each of the top tactic predicted by 𝑃tac , the 𝑃arg
predictor (whose detailed structure is shown in Figure 5) is
invoked. In addition to the tacticname, the𝑃arg predictor takes
several additional inputs: the goal, the hypotheses in context,
and the similarity between each of those hypotheses and
the goal. The 𝑃arg predictor produces scores for each possible
argument (in our case one score for each token in the goal, and
one score the single hypothesis). These scores are combined
with ⊗ to produce an overall scoring of proof commands.

5 Training
5.1 Training Architecture
Figure 7 shows the training architecture for the tactic
predictor, 𝑃tac (recall that the detailed architecture of 𝑃tac is
shown in Figure 4). Training is done through a stochastic
gradient descent optimizer, with Negative Log Likelihood
Loss (NLLLoss) as the criterion.

Figure 8 shows the training architecture for the argument
predictor, 𝑃arg (recall that the detailed architecture of 𝑃arg

is shown in Figure 5). Note that it is very important for us
to inject the tactics predicted by 𝑃tac into the input of the
argument model 𝑃arg , instead of using just the correct tactic
name. This allows the scores produced by the argument
model to be comparable across different predicated tactic.
Once the argument model 𝑃arg computes a score for each
possible argument, we combine these predictions using ⊗ to
get a distribution of scores over tactic/argument pairs. Finally,
this distribution, along with the correct tactic/argument pair
is passed to a module that computes changes to the weights
based on the NLLLoss criterion. In our main CompCert
benchmark the 153402 tactic samples from the training set
are processed for 20 epochs.

5.2 Learning FromHigher-order Proof Commands
Proof assistants generally have higher-order proof com-
mands, which are tactics that take other proof commands
as arguments; in Coq, these are called tacticals. While
higher-order proof commands are extremely important for
human proof engineers, they are harder to predict auto-
matically because of their generality. While some previous
work [38] attempts to learn directly on data which uses these
higher-order proof commands, we instead takes the approach
of desugaring higher-order proof commands into first-order
ones as much as possible; this makes the data more learnable,
without restricting the set of expressible proofs.

6 Prediction-Guided Search
Now that we have explained how we predict a single step
in the proof, we describe how Proverbot9001 uses these
predictions in a proof search.
In general, proof search works by transitioning the proof

assistant into different states by applying proof commands,
and backtracking when a given part of the search space has
either been exhausted, or deemed unviable. Exhaustive proof
search in proof assistants is untenable because the number
of possible proof commands to apply is large. Instead, we use
the predictor described above to guide the search. Aside from
using these predictions, the algorithm is a straightforward
depth-limited search, with three subtleties.

First we stop the search when we find a proof goal that
is at least as hard (by a syntactic definition) as a goal earlier
in the history. While in general it is hard to formally define
what makes one proof state harder than another, there are
some obvious cases which we can detect. A proof state with
a superset of the original obligations will be harder to prove,
and a proof state with the same goal, but fewer assumptions,
will be harder to prove.

To formalize this intuition, we define a relation ≥ between
states such that 𝜎1 ≥ 𝜎2 is meant to capture “Proof state 𝜎1
is at least as hard as proof state 𝜎2”. We say that 𝜎1 ≥𝜎2 if and
only if for all obligations𝑂2 in 𝜎2 there exists an obligation
𝑂1 in 𝜎1 such that 𝑂1≥𝑜𝑂2. For obligations 𝑂1 and 𝑂2, we

4



441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Proverbot9001 Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Ptac

“apply”

Prev tactic

“forall”

“eq”

Goal head

Hypothesis head

Distribution 

over tactics
“unfold”

Top tactics

“intros”

“apply”

Arg 

Model

Tactic 

Model

Parg

2

5

8

Parg

7

6

4

Parg

1

3

9
Distribution over 

tactic/arg pairs

Arg 

Scores

“unfold eq”

Features

“apply IHn”

“intros”

Top tactic/arg pairs

not (eq x y) y > (x+1)

Goal, Hypothesis, 

Similarity Score

5.2

Figure 6. The overall prediction model, combining the tactic prediction and argument prediction models.

Ptac

“apply”

Prev tactic

“forall”

“eq”

Goal head

Hypothesis head

Distribution 

over tacticsTactic 

Model

Features

“unfold”

Correct tactic

Weight 

Changes

Evaluate Criterion & 

Compute Weight 

Changes

Figure 7. The architecture for training the tactic models.

Distribution 

over tactics 

from Ptac

“unfold”

Top 

tactics

“intros”

“apply”

Arg

Model

Parg

2

5

8

Parg

7

6

4

Parg

1

3

9
Distribution over 

tactic/arg pairs

Arg

Scores

“unfold” Parg

3

9

7

Correct tactic
“unfold eq”

Correct tactic & 

argument

Weight 

Changes

Evaluate Criterion & 

Compute Weight 

Changes

Figure 8. The architecture for training the argument models.
Note that we inject predicted tactics into the input of the
argument model, instead of just using the correct tactic, so
that argument scores will be comparable.

say that𝑂1≥𝑜𝑂2 if and only if each hypothesis in𝑂1 is also
a hypothesis in𝑂2, and the goals of𝑂1 and𝑂2 are the same.
Since ≥ is reflexive, this notion allows us to generalize all

the cases above to a single pruning criteria: “proof command
prediction produces a proof state which is ≥ than a proof
state in the history”.

Second when backtracking, we do not attempt to find a
different proof for an already proven sub-obligation.While in
general this can lead to missed proofs because of existential
variables (typed holes filled based on context), this has not
been an issue for the kinds of proofs we have worked with
so far.

Third we had to adapt our notion of search “depth” to
the structure of Coq proofs (in which a tactic can produce
multiple sub-obligations). A naïve tree search through the
Coq proof space will fail to exploit some of the structure of
sub-proofs in Coq.

Consider for example the following two proofs:
1. intros. simpl. eauto.
2. induction n. eauto. simpl.

At first glance, it seems that both of these proofs have a
depth of three. This means that a straightforward tree search
(which is blind to the structure of subproofs) would not find
either of these proofs if the depth limit were set to two.
However, there is a subtlety in the second proof above

which is important (and yet not visible syntactically). Indeed,
the induction n proof command actually produces two
obligations (“sub-goals” in the Coq terminology). These
correspond to the base case and the inductive case for the
induction on n. Then eauto discharges the first obligation
(the base case), and simpl discharges the second obligation
(the inductive case). So in reality, the second proof above
really only has a depth of two, not three.
Taking this sub-proof structure into account is important

because it allows Proverbot9001 to discover more proofs for
a fixed depth. In the example above, if the depth were set to
two, and we used a naïve search, we would not find either
of the proofs. However, at the same depth of two, a search
which takes the sub-proof structure into account would be
able to find the second proof (since this second proof would
essentially be considered to have a depth of two, not three).

7 Evaluation
This section shows that Proverbot9001 is able to successfully
solve many proofs. We also experimentally show that
Proverbot9001 improves significantly on the state-of-the-art
presented in previous work.
First, in Section 7.2, we compare experimentally to

previous work, by running both Proverbot9001 and the
CoqGym [38] project on CompCert, in several configurations

5



551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

outlined in the CoqGym paper. Next, in Section 7.3, we
experiment with using the weights learned from one project
to produce proofs in another. Then, in Section 7.4, we show
the “hardness” of proofs that Proverbot9001 is generally
able complete, using the length of the original solution as
proxy for proof difficulty. Finally, in Section 7.5, we measure
the predictor subsystem, without proof search. Additional
evaluation can be found in the appendix.
Experiments were run on twomachines. Machine A is an

Intel i7 machine with 4 cores, a NVIDIA Quadro P4000 8BG
256-bit, and 20 gigabytes of memory. Machine B is Intel Xeon
E5-2686 v4 machine with 8 cores, a Nvidia Tesla v100 16GB
4096-bit, and 61 gigabytes of memory. Experiment running
uses GNU Parallel [36].
During the development of Proverbot9001, we explored

many alternatives, including n-gram/bag-of-words represen-
tations of terms, a variety of features, and several coremodels
including k-nearest neighbors, support vector machines, and
several neural architectures. While we include here some
experiments that explore high-level design decisions (such
as training and testing on the same projects vs cross project,
working with and without solver-based tooling, modifying
the search depth and width, and running with and without
pre-processing), we also note that in the development of a
large system tackling a hard problem, it becomes intractable
to evaluate against every possible permutation of every
design decision. In this setting,we are still confident in having
demonstrated a system that works for the specific problem
of generating correctness proof with performance that
outperforms the state-of-the-art techniques by many folds.

7.1 Summary of Results
Proverbot9001, run using CoqHammer [10] and the default
configuration, is able to produce proofs for 28%of the theorem
statements in CompCert. This represents a 2.4X improvement
over the previous state-of-the-art. Without any external
tooling, Proverbot9001 can produce proofs for 19.36%, an
almost 4X improvement over previous state-of-the-art
prediction-based proofs. Our core prediction model is able
to reproduce the tactic name from the solution 32% of the
time; and when the tactic name is correct, our model is able
to predict the solution argument 89% of the time. We also
show that Proverbot9001 can be trained on one project and
then effectively predict on another project.

7.2 Experimental Comparison to PreviousWork
We tested Proverbot9001 end-to-end by training on the proofs
from 162 files from CompCert, and testing on the proofs from
13 different files. On our default configuration, Proverbot9001
solves 19.36% (97/501) of the proofs in our test set.
In addition to running Proverbot9001 on CompCert, we

ran the CoqGym [38] tool, which represents the state of the
art in this area, on the same dataset in several configurations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

H G P G+P GH PH GH+PH

# 
pr

oo
fs

 s
ol

ve
d

97 100

138 142

37
23

48

P = Proverbot9001
G = CoqGym
H = CoqHammer
_H = _ with CoqHammer

Figure 9. A comparison of Proverbot9001 and CoqGym’s
abilities to complete proofs. H stands for CoqHammer by
itself, as a single invocation; G stands for CoqGym by itself;
P stands for Proverbot9001 by itself; G+P stands for the
union of proofs done by G or P; GH stands for CoqGymwith
CoqHammer; PH stands for Proverbot9001with CoqHammer;
GH+PH stands for the union of proofs done by GH or PH.

To account for differences in training dataset, we ran
CoqGym with their original training schema, and also our
training schema, and reported the best of the two numbers.
CoqGym is intended to be combined with a solver based
proof-procedure, CoqHammer [10], which is run after every
proof command invocation. While our system was not
originally designed this way, we compare both systems
using CoqHammer, as well as both systems without. We also
compared our system to using CoqHammer on the initial goal
directly, which simultaneously invokes Z3 [12], CVC4 [6],
Vampire [25], and E Prover [34], in addition to attempting
to solve the goal using a crush-like tactic [9].

Figure 9 shows the proofs solved by various configurations.
The configurations are described in the caption. For all
configurations, we ran Proverbot9001 with a search depth
of 6 and a search width of 3 (see Section 9.5). Note that in
Figure 9 the bars for H, G, and GH are prior work. The bars
P, G+P and GH+PH are the ones made possible by our work.
When CoqHammer is not used, Proverbot9001 can com-

plete nearly 4 times the number of proofs that are completed
by CoqGym. In fact, even when CoqGym is augmented with
CoqHammer Proverbot9001 by itself (without CoqHammer)
still completes 39 more proofs, which is a 67% improvement
(and corresponds to about 8% of the test set). When enabling
CoqHammer in both CoqGym and Proverbot9001, we see
that CoqGym solves 48 proofs whereas Proverbot9001 solves
138 proofs, which is a 2.88X improvement over the state of art.

Finally, CoqGym and Proverbot9001 approaches are
complementary; both can complete proofs which the other
cannot. Therefore, one can combine both tools to produce

6



661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Proverbot9001 Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

more solutions than either alone. Combining CoqGym and
Proverbot9001, without CoqHammer, allows us to complete
100/501 proofs, a proof success rate of 20%. Combining
Proverbot9001 and CoqGym, each with CoqHammer, allows
us to solve 142/501 proofs, a success rate of 28%. It’s important
to realize that, whereas the prior state of the art was CoqGym
with CoqHammer, at 48 proofs, by combining CoqGym and
Proverbot9001 (both with CoqHammer), we can reach a
grand total of 142 proofs, which is a 2.96X improvement over
the prior state of art.

7.3 Cross-Project Predictions
To test Proverbot9001’s ability to make use of training across
projects, we used the weights learned from CompCert, and
and ran Proverbot9001 in it’s default configuration on three
other Coq projects from the Coq Contrib collection, concat,
float, and zfc.
concat is a library of constructive category theory proofs,

which showcases Coq proofs of mathematical concepts
instead of program correctness. The concat library is made
of 514 proofs across 105 files; Proverbot9001 was able to
successfully produce a proof for 91 (17.7%) of the extracted
theorem statements, without the use of CoqHammer.

float is a formalization of floating point numbers, made
of 742 proofs across 38 files; Proverbot9001 was able to
successfully produce a proof for 100 (13.48%) proofs.

zfc is a formalization of set theory made of 241 proofs
across 78 files; 41 (17.01%) were successfully completed.

The comparable number for CompCert was 19.36%.
These results demonstrate not only that Proverbot9001

can operate on proof projects in a variety of domains, but
more importantly that it can effectively transfer training
from one project to another. This would allow programmers
to use Proverbot9001 even in the initial development of a
project, if it had been previously trained on other projects.

7.4 Original Proof Length vs Completion Rate
In Figure 10 and Figure 11, we plot a histogram of the original
proof lengths (in proof commands) vs the number of proofs of
that length.We break down the proofs by (frombottom to top)
numberwe solve, numberwe cannot solve but still have unex-
plored nodes, and number run out of unexplored nodes before
finding a solution. Note that for the second class (middle bar),
it’s possible that increasing the search depth would allow us
to complete the proof. Figure 10 shows proofs of length 10 or
below, and Figure 11 shows all proofs, binned in sets of 10.
There are several observations that can be made. First,

most original proofs in our test set are less than 20 steps long,
with a heavy tail of longer proofs. Second, we do better on
shorter proofs. Indeed, 51% (256/501) of the original proofs in
our test set are ten proof commands or shorter, and of those
proofs, we can solve 35% (89/256), compared to our overall
solve rate of 19.36% (97/501). Third, we are in some cases
able to handle proofs whose original length is longer then

Figure 10. A histogram plotting the original proof lengths
in proof commands vs number of proofs of that length, in
three classes, for proofs with length 10 or less. From bottom
to top: proofs solved, proofs unsolved because of depth limit,
and proofs where our search space was exhausted without
finding a solution.

Figure 11.A histogram plotting the original proof lengths in
proof commands vs number of proofs of that length, in three
classes. From bottom to top: proofs solved, proofs unsolved
because of depth limit, and proofs where our search space
was exhausted without finding a solution. Note that most
proofs are between 0 and 10 proof commands long, with a
long tail of much longer proofs.

10. Indeed, 7 of the proofs we solve (out of 79 solved) had an
original length longer than 10. In fact, the longest proof we
solve is originally 25 proof commands long; linearized it’s
256 proof commands long. Our solution proof is 267 (linear)
proof commands long, comparable to the original proof, with
frequent case splits. The depth limit for individual obligations
in our search was 6 in all of these runs.

7.5 Individual Prediction Accuracy
We want to measure the effectiveness of the predictor
subsystem that predicts proof command pairs (the 𝑃 function
defined in Section 4). To do this, we broke the test dataset
down into individual (linearized) proof commands, and ran to
just before each proof command to get it’s prediction context.
Then we fed that context into our predictor, and compared
the result to the proof command in the original solution. Of
all the proof commands in our test dataset, we are able to
predict 28.66% (3784/13203) accurately. This includes the

7



771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

correct tactic and the correct argument. If we only test on
the proof commands which are in Proverbot9001’s prediction
domain, we are able to predict 39.25% (3210/8178) accurately.
During search, our proof command predictor returns the

top N tactics for various values of N, and all of these proof
commands are tried. Therefore, we also measured how often
the proof command in the original proof is in the top 3 predic-
tions, and the top 5 predictions. For all proof commands in the
data set, the tactic in the original proof is in our top 3 predic-
tions 38.93% of the time, and in our top 5 predictions 42.66% of
the time. If we restrict to proof commands in Proverbot9001’s
prediction domain, those numbers are 52.17% and 60.39%.

8 RelatedWork
8.1 Program Synthesis
Program Synthesis is the automatic generation of programs
from a high-level specification [17]. This specification can
come in many forms, the most common being a logical
formula over inputs and outputs, or a set of input-output
examples. Programs generated can be in a variety of
paradigms and languages, often domain-specific. Our tool,
Proverbot9001, is a program synthesis tool that focuses on
synthesis of proof command programs.
Several program synthesis works have used types exten-

sively to guide search. Some work synthesizes programs
purely from their types [18], while other work uses both a
type and a set of examples to synthesize programs [14, 31].
In Proverbot9001, the programs being synthesized use a term
type as their specification, however, the proof command
program itself isn’t typed using that type, rather it must
generate a term of that type (through search).
Further work in [27] attempts to learn from a set of

patches on GitHub, general rules for inferring patches
to software. This work does not use traditional machine
learning techniques, but nevertheless learns from data, albeit
in a restricted way.

8.2 Machine Learning for Code
Machine learning formodeling code is awell exploredarea [2],
as analternative tomore structuredmethodsofmodelingcode.
Several models have been proposed for learning code, such
as AST-like trees [30], long-term language models [11], and
probabilistic grammars [7]. Proverbot9001 does not attempt
to be so general, using a model of programs that is specific to
its domain, allowing us to capture the unique dependencies of
proof command languages.While themodel is simple, it is able
to model real proofs better than more general models in simi-
lar domains (see Section 7.2). Machine learning has been used
for various tasks such as code and patch generation [2, 7, 11],
program classification [30], and learning loop invariants [15].

8.3 Machine Learning for Proofs
While machine learning has previously been explored for
various aspects of proof writing, we believe there are still sig-
nificant opportunities for improving on the state-of-the-art,
getting closer and closer to making foundational verification
broadly applicable.
More concretely, work on machine learning for proofs

includes: using machine learning to speed up automated
solvers [4], developing data sets [5, 21, 38], doing premise
selection [1, 28], pattern recognition [24], clustering proof
data [23], learning from synthetic data [20], interactively
suggesting tactics [19, 23].
Finally, CoqGym attempts to model proofs with a fully

general proof command and termmodel expressing arbitrary
AST’s. We experimentally compare Proverbot9001’s ability
to complete proofs to that of CoqGym in detail in Section 7.2
There are also several important conceptual differences. First,
the argument model in CoqGym is not as expressive as the
one in Proverbot9001. CoqGym’s argumentmodel can predict
a hypothesis name, a number between 1 and 4 (which many
tactics in Coq interpret as referring to binders, for example
induction 2 performs induction on the second quantified
variable), or a random (not predicted using machine learning)
quantified variable in the goal. In contrast, the argument
model in Proverbot9001 can predict any token in the goal,
which subsumes the numbers and the quantified variables
that CoqGym can predict. Most importantly because Prover-
bot9001’smodel can predict symbols in the goal,which allows
effective unfolding, for example “unfold eq”. Second, in con-
trast to CoqGym, Proverbot9001 uses several hand-tuned fea-
tures for predicting proof commands. One key example is the
previous tactic, which CoqGym does not even encode as part
of the context. Third, CoqGym’s treatment of higher-order
proof commands like “;” is not as effective as Proverbot9001’s.
While neither system can predict “;”, Proverbot9001 learns
from “;” by linearizing them, whereas CoqGym does not.
There is also a recent line of work on doing end-to-end

proofs in Isabelle/HOL and HOL4 [5, 16, 32]. This work
is hard to experimentally compare to ours, since they use
different benchmark sets, proof styles, and proof languages.
Their most recent work [32] uses graph representations of
terms, which is a technique that we have not yet used, and
could adapt if proven successful.

Finally, there is also another approach to proof generation,
which is to generate the term directly using language
translation models [35], instead of using tactics; however
this technique has only been applied to small proofs due to
it’s direct generation of low-level proof term syntax.

References
[1] Alexander A. Alemi, François Chollet, Geoffrey Irving, Christian

Szegedy, and Josef Urban. 2016. DeepMath - Deep Sequence Models
for Premise Selection. CoRR abs/1606.04442 (2016). arXiv:1606.04442
http://arxiv.org/abs/1606.04442

8



881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Proverbot9001 Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and
Charles A. Sutton. 2017. A Survey of Machine Learning for Big Code
and Naturalness. CoRR abs/1709.06182 (2017). arXiv:1709.06182
http://arxiv.org/abs/1709.06182

[3] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive:
SHA-256. ACM Trans. Program. Lang. Syst. 37, 2, Article 7 (April 2015),
31 pages. https://doi.org/10.1145/2701415

[4] Mislav Balunoviundefined, Pavol Bielik, and Martin Vechev. 2018.
Learning to Solve SMTFormulas. InProceedings of the 32nd International
Conference on Neural Information Processing Systems (NIPS’18). Curran
Associates Inc., Red Hook, NY, USA, 10338–10349.

[5] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian
Szegedy, and Stewart Wilcox. 2019. HOList: An Environment
for Machine Learning of Higher-Order Theorem Proving (ex-
tended version). CoRR abs/1904.03241 (2019). arXiv:1904.03241
http://arxiv.org/abs/1904.03241

[6] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011.
CVC4. In Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV’11). Springer-Verlag, Berlin, Heidelberg,
171–177. http://dl.acm.org/citation.cfm?id=2032305.2032319

[7] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG:
Probabilistic Model for Code. In Proceedings of The 33rd Interna-
tional Conference on Machine Learning (Proceedings of Machine
Learning Research), Maria Florina Balcan and Kilian Q. Weinberger
(Eds.), Vol. 48. PMLR, New York, New York, USA, 2933–2942.
http://proceedings.mlr.press/v48/bielik16.html

[8] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay
İleri, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich.
2017. Verifying a High-performance Crash-safe File System Using a
Tree Specification. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17). ACM, New York, NY, USA, 270–286.
https://doi.org/10.1145/3132747.3132776

[9] Adam Chlipala. 2013. Certified Programming with Dependent Types:
A Pragmatic Introduction to the Coq Proof Assistant. The MIT Press.

[10] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automa-
tion for Dependent Type Theory. Journal of Automated Reasoning 61,
1 (01 Jun 2018), 423–453. https://doi.org/10.1007/s10817-018-9458-4

[11] HoaKhanhDam, Truyen Tran, and Trang Pham. 2016. A deep language
model for software code. CoRR abs/1608.02715 (2016). arXiv:1608.02715
http://arxiv.org/abs/1608.02715

[12] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 337–340.

[13] Jean-Christophe Filliâtre, Hugo Herbelin, Bruno Barras, Bruno Barras,
Samuel Boutin, Eduardo Giménez, Samuel Boutin, Gérard Huet,
César Muñoz, Cristina Cornes, Cristina Cornes, Judicaël Courant,
Judicael Courant, ChetanMurthy, ChetanMurthy, Catherine Parent,
Catherine Parent, Christine Paulin-mohring, Christine Paulin-mohring,
Amokrane Saibi, Amokrane Saibi, Benjamin Werner, and Benjamin
Werner. 1997. The Coq Proof Assistant - Reference Manual Version 6.1.
Technical Report.

[14] Jonathan Frankle, Peter-Michael Osera, David Walker, and S
Zdancewic. 2016. Example-directed synthesis: a type-theoretic
interpretation. ACM SIGPLAN Notices 51 (01 2016), 802–815.
https://doi.org/10.1145/2914770.2837629

[15] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth.
2016. Learning Invariants Using Decision Trees and Implica-
tion Counterexamples. SIGPLAN Not. 51, 1 (Jan. 2016), 499–512.
https://doi.org/10.1145/2914770.2837664

[16] Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. 2017. TacticToe:
Learning to Reason with HOL4 Tactics. In LPAR-21. 21st International
Conference on Logic for Programming, Artificial Intelligence and

Reasoning (EPiC Series in Computing), Thomas Eiter and David Sands
(Eds.), Vol. 46. EasyChair, 125–143. https://doi.org/10.29007/ntlb

[17] Sumit Gulwani. 2010. Dimensions in Program Synthesis. In
PPDP ’10 Hagenberg, Austria (ppdp ’10 hagenberg, austria ed.).
https://www.microsoft.com/en-us/research/publication/dimensions-
program-synthesis/

[18] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013.
Complete Completion using Types andWeights. PLDI 2013 (2013), 12.
27–38. http://infoscience.epfl.ch/record/188990

[19] Jónathan Heras and Ekaterina Komendantskaya. 2014. ACL2(ml):
Machine-Learning for ACL2. In Proceedings Twelfth International
Workshop on the ACL2 Theorem Prover and its Applications, Vienna,
Austria, 12-13th July 2014. 61–75. https://doi.org/10.4204/EPTCS.152.5

[20] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya
Sutskever. 2018. GamePad: A Learning Environment for The-
orem Proving. CoRR abs/1806.00608 (2018). arXiv:1806.00608
http://arxiv.org/abs/1806.00608

[21] Cezary Kaliszyk, François Chollet, and Christian Szegedy. 2017.
HolStep: A Machine Learning Dataset for Higher-order Logic
Theorem Proving. CoRR abs/1703.00426 (2017). arXiv:1703.00426
http://arxiv.org/abs/1703.00426

[22] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles (SOSP ’09). ACM, New York, NY, USA, 207–220.
https://doi.org/10.1145/1629575.1629596

[23] Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov.
2012. Machine Learning in Proof General: Interfacing Interfaces.
Electronic Proceedings in Theoretical Computer Science 118 (12 2012).
https://doi.org/10.4204/EPTCS.118.2

[24] Ekaterina Komendantskaya and Kacper Lichota. 2012. Neural
Networks for Proof-Pattern Recognition, Vol. 7553. 427–434.
https://doi.org/10.1007/978-3-642-33266-1_53

[25] Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem
Proving and Vampire, Vol. 8044. 1–35. https://doi.org/10.1007/978-
3-642-39799-8_1

[26] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115. http://xavierleroy.org/publi/compcert-
CACM.pdf

[27] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic
inference of code transforms for patch generation. 727–739.
https://doi.org/10.1145/3106237.3106253

[28] SarahM. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk.
2017. Deep Network Guided Proof Search. CoRR abs/1701.06972 (2017).
arXiv:1701.06972 http://arxiv.org/abs/1701.06972

[29] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. 2010. Toward a Verified Relational Database Management
System. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’10). ACM,
New York, NY, USA, 237–248. https://doi.org/10.1145/1706299.1706329

[30] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN:
A Tree-Based Convolutional Neural Network for Programming
Language Processing. CoRR abs/1409.5718 (2014). arXiv:1409.5718
http://arxiv.org/abs/1409.5718

[31] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-
directed Program Synthesis. SIGPLAN Not. 50, 6 (June 2015), 619–630.
https://doi.org/10.1145/2813885.2738007

[32] Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and
Christian Szegedy. 2019. GraphRepresentations forHigher-Order Logic
and Theorem Proving. CoRR abs/1905.10006 (2019). arXiv:1905.10006
http://arxiv.org/abs/1905.10006

9



991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

[33] Lawrence C. Paulson. 1993. Natural Deduction as Higher-Order Reso-
lution. CoRR cs.LO/9301104 (1993). http://arxiv.org/abs/cs.LO/9301104

[34] Stephan Schulz. 2013. System Description: E 1.8. In Proc. of the 19th
LPAR, Stellenbosch (LNCS), KenMcMillan, AartMiddeldorp, andAndrei
Voronkov (Eds.), Vol. 8312. Springer.

[35] Taro Sekiyama, Akifumi Imanishi, and Kohei Suenaga. 2017. Towards
Proof Synthesis Guided by Neural Machine Translation for Intuitionis-
tic Propositional Logic. CoRR abs/1706.06462 (2017). arXiv:1706.06462
http://arxiv.org/abs/1706.06462

[36] O. Tange. 2011. GNU Parallel - The Command-Line Power
Tool. ;login: The USENIX Magazine 36, 1 (Feb 2011), 42–47.
http://www.gnu.org/s/parallel

[37] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A
Framework for Implementing and Formally Verifying Distributed
Systems. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15). ACM,
New York, NY, USA, 357–368. https://doi.org/10.1145/2737924.2737958

[38] Kaiyu Yang and Jia Deng. 2019. Learning to Prove Theorems via
Interacting with Proof Assistants. CoRR abs/1905.09381 (2019).
arXiv:1905.09381 http://arxiv.org/abs/1905.09381

[39] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and Understanding Bugs in C Compilers. PLDI (2011).

10



1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Proverbot9001 Conference’17, July 2017, Washington, DC, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

9 Appendix: Additional Evaluation
We now explore more detailed measurements about proof
production.

9.1 Argument Accuracy
Our argument predictionmodel is crucial to the success of our
system, and forms one of the main contributions of our work.
To measure it’s efficacy at improving search is hard, because
it’s impossible to separate it’s success in progressing a proof
from the success of the tactic predictor. However, we can
measure how it contributes to individual prediction accuracy.
On our test dataset, where we can predict the full proof

command in the original proof correctly 28.66% of the time,
we predict the tactic correctly but the argument wrong
32.24% of the time. Put another way, when we successfully
predict the tactic, we can predict the argument successfully
with 89% accuracy. If we only test on proof commands within
Proverbot9001’s prediction domain, where we correctly pre-
dict the entire proof command 39.25% of the time, we predict
the name correctly 41.01% of the time; that is, our argument
accuracy is 96% when we get the tactic right. It’s important
to note, however, that many common tactics don’t take any
arguments, and thus predicting their arguments is trivial.

9.2 Completion
Rate in Proverbot9001’s Prediction Domain

Proverbot9001 has a restricted model of proof commands:
it only captures proof commands with a single argument that
is a hypothesis identifier or a token in the goal. As result, it
makes sense to consider Proverbot9001 within the context
of proofs that were originally solved with these types of
proof commands. We will call proofs that were originally
solved using these types of proof commands proofs that are in
Proverbot9001’s prediction domain. There are 79 such proofs
in our test dataset (15.77% of the proofs in the test dataset),
and Proverbot9001 was able to solve 48 of them.
What is interesting is that Proverbot9001 is able to solve

proofs that are not in its prediction domain: these are proofs
that were originally performed with proof commands that
are not in Proverbot9001’s domain, but Proverbot9001
found another proof of the theorem that is in its domain.
This happened for 49 proofs (out of a total of 97 solved
proofs). Sometimes this is because Proverbot9001 is able
to find a simpler proof command which fills the exact role
of a more complex one in the original proof; for instance,
destruct (find_symbol ge id) in an original proof is
replaced by destruct find_symbol in Proverbot9001’s
solution. Other times it is because Proverbot9001 finds a
proof which takes an entirely different path than the original.
In fact, 31 of Proverbot9001’s 97 found solutions are shorter
than the original. It’s useful to note that while previous work
had a more expressive proof commandmodel, in practice it

0 100 101 102

Length of proofs found by Proverbot9001

0

100

101

102

Le
ng

th
 o

f l
in

ea
riz

ed
 p

ro
of

s

Figure 12.A comparison of the lengths of our found solution
proofs and the lengths of their original solution proofs.

was unable to solve as many proofs as Proverbot9001 could
in our more restricted model.

Together, these numbers indicate that the restricted tactic
model used by Proverbot9001 does not inhibit it’s ability
to solve proofs in practice, even when the original proof
solution used tactics outside of that model.

9.3 Original Proof Lengths vs Solution Lengths
In Figure 12, we compare, for proofs which Proverbot9001
was able to solve, the original (linearized) proof length and
our solution proof length. Dots above the diagonal dashed
line are cases where Proverbot9001’s proof is shorter than the
original proof (31 out of 97 proofs); dots below the diagonal
dashed line are cases where Proverbot9001’s proof is longer
than the original proof (53 out of 97 proofs); dots on the
diagonal dashed line are cases where Proverbot9001’s proof
is the same length as the original proof (13 out of 97 proofs);

While it is unsurprising that for many proofs our solution
is longer, the fact that for 31 proofs our solution was shorter
is unexpected. Since our proof command model forces us
into more primitive tactics than those used in the original
solutions, one would think that it should take us at least
as many proof commands to solve the same propositions.
However, since Proverbot9001 searches a large space for a
solution proof, it can often find correct sequences of proof
commands that are not apparent to human proof engineers.

9.4 Data Transformation
Crucial to Proverbot9001’s performance is its ability to learn
from data which is not initially in its proof command model,
but can be transformed into data which is. This includes
desugaring tacticals like now, splitting up multi-argument
tactics like unfold a, b into single argument ones, and
rearranging proofs with semicolons into linear series of proof

11



1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Conference’17, July 2017, Washington, DC, USA Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

commands. To evaluate howmuch this data transformation
contributes to the overall performance of Proverbot9001, we
disabled it, and instead filtered the proof commands in the
dataset which did not fit into our proof command model.

With data transformation disabled, and the default search
width (5) and depth (6), the proof completion accuracy of
Proverbot9001 is 15.57% (78/501 proofs). Recall that with data
transformation enabled as usual, this accuracy is 19.36%. This
shows that the end-to-end performance of Proverbot9001
benefits greatly from the transformation of input data,
although it still outperforms prior work (CoqGym) without it.
When we measure the individual prediction accuracy

of our model, trained without data transformation, we see
that its performance significantly decreases (16.32% instead
of 26.77%), demonstrating that the extra data produced by
preprocessing is crucial to training a good tactic predictor.

9.5 SearchWidths and Depths
Oursearchprocedurehas twomainparameters, a searchwidth,
and a search depth. The search width is howmany predictions
are explored at each context. The search depth is the longest
path from the root a single proof obligation state can have.
To explore the space of possible depths and widths, we

varied the depth and width, on our default configuration
without external tooling. With a search width of 1 (no search,
just running the first prediction), and a depth of 6, we can
solve 5.59% (28/501) of proofs in our test dataset. With a
search width of 2, and a depth of 6, we’re able to solve 16.17%
(81/501) of proofs, as opposed to a width of 3 and depth of
6, where we can solve 19.36% of proofs.
To explore variations in depth, we set the width at 3, and

varied depth. With a depth of 2, we were able to solve 5.19%
(26/501) of the proofs in our test set. By increasing the depth
to 4, we were able to solve 13.97% (70/501) of the proofs in
our test set. At a depth of 6 (our default), that amount goes
up to 19.36% (97/501).

12


