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Generating Correctness Proofs with Neural Networks
Anonymous Author(s)

Abstract
Foundational verification allows programmers to build soft-
ware which has been empirically shown to have high levels
of assurance in a variety of important domains. However, the
cost of producing foundationally verified software remains
prohibitively high for most projects, as it requires significant
manual effort by highly trained experts. In this paper we
present Proverbot9001, a proof search system using machine
learning techniques to produce proofs of software correctness
in interactive theorem provers. We demonstrate Prover-
bot9001 on the proof obligations from a large practical proof
project, the CompCert verified C compiler, and show that it
can effectively automatewhatwere previouslymanual proofs,
automaticallyproducingproofs for28%of theoremstatements
in our test dataset, when combined with solver-based tooling.
Without any additional solvers, we exhibit a proof completion
rate that is a 4X improvement over prior state-of-the-art
machine learning models for generating proofs in Coq.

Keywords Machine-learning, Theorem proving

1 Introduction
Apromising approach to software verification is foundational
verification. In this approach, programmers use an interactive
theoremprover, such asCoq [13] or Isabelle/HOL [33], to state
and prove properties about their programs. Foundational
verification has shown increasing promise over the past two
decades; it has been used to prove properties of programs
in a variety of settings, including compilers [26], operating
systems [22], database systems [29], file systems [8],
distributed systems [37], and cryptographic primitives [3].
One of the main benefits of foundational verification is

that it provides high levels of assurance. The interactive
theorem prover makes sure that proofs of program properties
are done in full and complete detail, without any implicit
assumptions or forgotten proof obligations. Furthermore,
once a proof is completed, foundational proof assistants
can generate a representation of the proof in a foundational
logic; these proofs can be checked with a small kernel. In this
setting only the kernel needs to be trusted (as opposed to the
entire proof assistant), leading to a small trusted computing
base. As an example of this high-level of assurance, a study
of compilers [39] has shown that CompCert [26], a compiler
proved correct in the Coq proof assistant, is significantly
more robust than its non-verified counterparts.
Unfortunately, the benefits of foundational verification

come at a great cost. The process of performing proofs in a

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

proof assistant is extremely laborious. CompCert [26] took
6 person-years and 100,000 lines of Coq to write and verify,
and seL4 [22], which is a verified version of a 10,000 line
operating system, took 22 person-years to verify. The sort of
manual effort is one of the main impediments to the broader
adoption of proof assistants.
In this paper, we present Proverbot9001, a novel system

that uses machine learning to help alleviate the manual effort
required to complete proofs in an interactive theorem prover.
Proverbot9001 trains on existing proofs to learn models.
Proverbot9001 then incorporates these learned models in
a tree search process to complete proofs. The source of
Proverbot9001 is publicly available on GitHub 1.
The main contribution of this paper is bringing domain

knowledge to the feature engineering, model architecture,
and search procedures of machine-learning based systems
for interactive theorem proving. In particular, our work
distinguishes itself from prior work on machine learning for
proofs in three ways:

1. A two part tactic-predictionmodel, inwhich prediction
of tactic arguments is primary and informs prediction
of tactics themselves.

2. An argument prediction architecture which makes
use of recurrent neural networks over sequential
representations of terms.

3. Several effective tree pruning techniques inside of a
prediction-guided proof search.

We tested Proverbot9001 end-to-end by training on the
proofs from 162 files from CompCert, and testing on the
proofs from 13 files2. When combined with solver-based tool-
ing (which alone can only solve 7% of proofs), Proverbot9001
can automatically produce proofs for 28% of the theorem
statements in our test dataset (138/501). In our default
configuration without external solvers, Proverbot9001 solves
(produces a checkable proof for) 19.36% (97/501) of the proofs
in our test set, which is a nearly 4X improvement over the
previous state of the art system that attempts the same
task [38]. Ourmodel is able to reproduce the tactic name from
the solution 32% of the time; and when the tactic name is
correct, ourmodel is able to predict the solution argument 89%
of the time. We also show that Proverbot9001 can be trained
on one project and then effectively predict on another project.

1Link removed for double-blind review
2This training/test split comes from splitting the dataset 90/10, and then
removing from the test set files that don’t contain proofs.
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Figure 1. The overall architecture of Proverbot9001, built
using CoqSerapi, Python, and PyTroch.

eval_mulhs

econstructor unfold binary_constructor_sound

eautosimpl try omega

eauto

intros simpl eauto

inv H

TrivialExists

QED

TrivialExistsinv H0

substeconstructor

Figure 2. A graph of a Proverbot9001 search. In green are
the tactics that formed part of the discovered solution, as well
as the lemma name and the QED. In orange are nodes that
resulted in a context that is at least as hard as one previously
found (see Section 6).

2 Overview
In this section, we’ll present Proverbot9001’s prediction and
search process with an example from CompCert. You can see
the top-level structure of Proverbot9001 in Figure 1.
Consider the following theorem from the CompCert

compiler:
Definition binary_constructor_sound

(cstr: expr -> expr -> expr)
(sem: val -> val -> val) : Prop :=

forall le a x b y,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
exists v, eval_expr ge sp e m le (cstr a b) v

/\ Val.lessdef (sem x y) v.

Theorem eval_mulhs:
binary_constructor_sound mulhs Val.mulhs.

Proof.
...

This theorem states that the mulhs expression constructor
is sound with respect to the specification Val.mulhs.
At the beginning of the proof of eval_mulhs, Prover-

bot9001 predicts three candidate tactics, econstructor,
eauto, and unfold binary_constructor_sound. Once

T Tactics
A Tactic arguments
C=T ×A Proof commands
I Identifiers
Q Propositions
G=Q Goals
H =I×Q Hypotheses
O= [H]×G Obligations
S= [O×[C]] Proof states

Figure 3. Formalism to model a Proof Assistant

these predictions are made, Proverbot9001 tries running all
three, which results in three new states of the proof assistant.
In each of these three states, Proverbot9001 again makes
predictions for what the most likely tactics are to apply
next. These repeated predictions create a search tree, which
Proverbot9001 explores in a depth first way. The proof com-
mand predictions that Proverbot9001 makes are ordered by
likelihood, and the search explores more likely branches first.
Figure 2 shows the resulting search tree for eval_mulhs.

The nodes in green are the nodes that produce the final proof.
Orange nodes are predictions that fail tomake progress on the
proof (see Section 6); these nodes are not expanded further.
All the white nodes to the right of the green path are not
explored, because the proof in the green path is found first.

3 Definitions
In the rest of the paper, we will describe the details of how
Proverbot9001 works. We start with a set of definitions that
will be used throughout. In particular, Figure 3 shows the
formalism we will use to represent the state of an in-progress
proof. A tactic 𝜏 ∈ T is a tactic name. An argument 𝑎 ∈ A
is a tactic argument. For simplicity of the formalism, we
assume that all tactics take zero or one arguments. We use
I for the set of Coq identifiers, and Q for the set of Coq
propositions. A proof state 𝜎 ∈ S is a state of the proof
assistant, which consists of a list of obligations along with
their proof command history. We use [𝑋 ] to denote the set of
lists of elements from𝑋 . An obligation is a pair of: (1) a set of
hypotheses (2) a goal to prove. A hypothesis is a proposition
named by an identifier, and a goal is a proposition.

4 Predicting a Single Proof Step
We start by explaining how we predict individual steps in
the proof. Once we have done this, we will explain howwe
use these proof command predictions to guide a proof search
procedure.
We define D[𝜏] to be a scoring function over 𝜏 , where

larger scores are preferred over smaller ones:

D[𝜏]=𝜏→R
2
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We define a 𝜏-predictor R[𝜏] to be a function that takes a
proof state 𝜎 ∈ S (i.e. a state of the proof assistant under
which we want to make a prediction) and returns a scoring
function over 𝜏 . In particular, we have:

R[𝜏]=S→D[𝜏]
Our main predictor 𝑃 will be a predictor of the next step in
the proof, i.e. a predictor for proof commands:

𝑃 :R[T ×A]
We divide our main predictor into two predictors, one for
tactics, and one for arguments:

𝑃tac :R[T ]
𝑃arg :T →R[A]

Our main predictor 𝑃 combines 𝑃tac and 𝑃arg as follows:
𝑃 (𝜎)=𝜆(𝜏,𝑎) . 𝑃tac (𝜎) (𝜏) ⊗ 𝑃arg (𝜏) (𝜎) (𝑎)

where ⊗ is an operator that combines the scores of the tactic
and the argument predictors. We now describe the three
parts of this prediction architecture in turn: 𝑃tac , 𝑃arg , and ⊗.

4.1 Predicting Tactics (𝑃tac)
To predict tactics, Proverbot9001 uses of a set of manually
engineered features to reflect important aspects of proof
prediction: (1) the head of the goal as an integer (2) the name
of the previously run tactic as an integer (3) a hypothesis that
is heuristically chosen (based on string similarity to goal) as
being the most relevant to the goal (4) the similarity score
of this most relevant hypothesis.
These features are embedded into a continuous vector of

128 floats using a standard word embedding, and then fed
into a fully connected feed-forward neural network (3 layers,
128 nodes-wide) with a softmax (normalizing) layer at the
end, to compute a probability distribution over possible tactic
names. This architecture is trained on 153402 samples with
a stochastic gradient descent optimizer.
The architecture of this model is shown in Figure 4. Blue

boxes represent input; purple boxes represent intermediate
encoded values; green boxes represent outputs; and gray
circles represent computations. The NN circle is the feed-
forward Neural Network mentioned above. The Enc circle
is a word embedding module.

4.2 Predicting Tactic Arguments (𝑃arg)
Once a tactic is predicted, Proverbot9001 next predicts
arguments. Recall that the argument predictor is a function
𝑃arg : R[A]. In contrast to previous work, our argument
model is a prediction architecture in its own right.
Proverbot9001 currently predicts zero or one tactic

arguments; However, since the most often-used multi-
argument Coq tactics can be desugared to sequences
of single argument tactics (for example “unfold a, b”
to “unfold a. unfold b.”), this limitation does not
significantly restrict our expressivity in practice.

NN

“apply”

Encode
Previous tactic

“forall”

“eq”

Goal head

Hypothesis head

Vectors of reals

Enc Distribution 

over tactics

Enc

Enc

Figure 4. Proverbot9001’s model for predicting tactics. Takes
as input three features for each data point: the previous tactic
run, the head token of the goal, and of the most relevant
hypothesis (see Section 4.1). We restrict the previous tactic
feature to the 50 most common tactics, and head tokens on
goal and hypothesis to the 100 most common head tokens.

Proverbot9001 makes three kinds of predictions for
arguments: goal-token arguments, hypothesis arguments,
lemma arguments:
Goal-token arguments are arguments that are a single

token in the goal; for instance, if the goal is not (eq x y), we
might predict unfold not, where not refers to the first token
in the goal. In the case of tactics like unfold and destruct,
the argument is often (though not always) a token in the goal.

Hypothesis arguments identifiers referring to a hypothesis
in context. For instance, if we have a hypothesis H in
context, with type is_path (cons (pair s d) m), we
might predict inversion H, where H refers to the hypothesis,
and inversion breaks it down. In the case of tactics like
inversion and destruct, the argument is often a hypothesis
identifier.
Finally, lemma arguments are identifiers referring to a

previously defined proof. These can be basic facts in the
standard library, like
plus_n_0 : forall n : nat, n = n + 0

or a lemma from the current project, such as the eval_mulhs
described in the overview. In Proverbot9001, lemmas are
considered from a subset of the possible lemma arguments
available in the global context, in order to make training
tractable. Proverbot9001 supports several different modes
for determining this subset; by default we consider lemmas
defined previously in the current file.
The architecture of the scoring functions for these

argument types is shown in Figure 5. One recurrent neural
network (RNN) is used to give scores to each hypothesis and
lemma by processing the type of the term, and outputting
a final score. A different RNN is then used to process the goal,
assigning a score to each token in processes.

4.3 Combining Tactic and Argument Scores (⊗)
The ⊗ operator attempts to provide a balanced combination
of tactic and argument prediction, taking both into account
even across different tactics. The operator works as follows.

3
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“unfold”
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predicted by Ptac

Goal
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0
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5.2
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Similarity Score

NN

Encoded Goal

60

8.22.13.09.2

8

1 3 4 29 5
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Token Output 
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Figure 5. The model for scoring possible arguments.

We pick the 𝑛 highest-scoring tactics and for each tactic
the 𝑚 highest-scoring arguments. We then score each
proof command by multiplying the tactic score and the
argument score, without any normalization. Formally, we can
implement this approach by defining ⊗ to be multiplication,
and by not normalizing the probabilities produced by 𝑃arg
until all possibilities are considered together.

Because we don’t normalize the probabilities of tactics, the
potential arguments for a tactic are used in determining the
eligibility of the tactic itself (as long as that tactic is in the
top 𝑛). This forms one of the most important contributions of
our work: the argument selection is primary, with the tactic
prediction mostly serving to help prune it’s search space.

4.4 Putting it all together
The overall architecture that we have described is shown in
Figure 6. The𝑃tac predictor (whose detailed structure is shown
in Figure 4) computes a distribution over tactic using three
features as input: the previous tactic, head constructor of goal,
and head constructor of the hypothesis deemedmost relevant.
Then, for each of the top tactic predicted by 𝑃tac , the 𝑃arg
predictor (whose detailed structure is shown in Figure 5) is
invoked. In addition to the tacticname, the𝑃arg predictor takes
several additional inputs: the goal, the hypotheses in context,
and the similarity between each of those hypotheses and
the goal. The 𝑃arg predictor produces scores for each possible
argument (in our case one score for each token in the goal, and
one score the single hypothesis). These scores are combined
with ⊗ to produce an overall scoring of proof commands.

5 Training
5.1 Training Architecture
Figure 7 shows the training architecture for the tactic
predictor, 𝑃tac (recall that the detailed architecture of 𝑃tac is
shown in Figure 4). Training is done through a stochastic
gradient descent optimizer, with Negative Log Likelihood
Loss (NLLLoss) as the criterion.

Figure 8 shows the training architecture for the argument
predictor, 𝑃arg (recall that the detailed architecture of 𝑃arg

is shown in Figure 5). Note that it is very important for us
to inject the tactics predicted by 𝑃tac into the input of the
argument model 𝑃arg , instead of using just the correct tactic
name. This allows the scores produced by the argument
model to be comparable across different predicated tactic.
Once the argument model 𝑃arg computes a score for each
possible argument, we combine these predictions using ⊗ to
get a distribution of scores over tactic/argument pairs. Finally,
this distribution, along with the correct tactic/argument pair
is passed to a module that computes changes to the weights
based on the NLLLoss criterion. In our main CompCert
benchmark the 153402 tactic samples from the training set
are processed for 20 epochs.

5.2 Learning FromHigher-order Proof Commands
Proof assistants generally have higher-order proof com-
mands, which are tactics that take other proof commands
as arguments; in Coq, these are called tacticals. While
higher-order proof commands are extremely important for
human proof engineers, they are harder to predict auto-
matically because of their generality. While some previous
work [38] attempts to learn directly on data which uses these
higher-order proof commands, we instead takes the approach
of desugaring higher-order proof commands into first-order
ones as much as possible; this makes the data more learnable,
without restricting the set of expressible proofs.

6 Prediction-Guided Search
Now that we have explained how we predict a single step
in the proof, we describe how Proverbot9001 uses these
predictions in a proof search.
In general, proof search works by transitioning the proof

assistant into different states by applying proof commands,
and backtracking when a given part of the search space has
either been exhausted, or deemed unviable. Exhaustive proof
search in proof assistants is untenable because the number
of possible proof commands to apply is large. Instead, we use
the predictor described above to guide the search. Aside from
using these predictions, the algorithm is a straightforward
depth-limited search, with three subtleties.

First we stop the search when we find a proof goal that
is at least as hard (by a syntactic definition) as a goal earlier
in the history. While in general it is hard to formally define
what makes one proof state harder than another, there are
some obvious cases which we can detect. A proof state with
a superset of the original obligations will be harder to prove,
and a proof state with the same goal, but fewer assumptions,
will be harder to prove.

To formalize this intuition, we define a relation ≥ between
states such that 𝜎1 ≥ 𝜎2 is meant to capture “Proof state 𝜎1
is at least as hard as proof state 𝜎2”. We say that 𝜎1 ≥𝜎2 if and
only if for all obligations𝑂2 in 𝜎2 there exists an obligation
𝑂1 in 𝜎1 such that 𝑂1≥𝑜𝑂2. For obligations 𝑂1 and 𝑂2, we

4
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Figure 6. The overall prediction model, combining the tactic prediction and argument prediction models.
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Figure 7. The architecture for training the tactic models.
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Figure 8. The architecture for training the argument models.
Note that we inject predicted tactics into the input of the
argument model, instead of just using the correct tactic, so
that argument scores will be comparable.

say that𝑂1≥𝑜𝑂2 if and only if each hypothesis in𝑂1 is also
a hypothesis in𝑂2, and the goals of𝑂1 and𝑂2 are the same.
Since ≥ is reflexive, this notion allows us to generalize all

the cases above to a single pruning criteria: “proof command
prediction produces a proof state which is ≥ than a proof
state in the history”.

Second when backtracking, we do not attempt to find a
different proof for an already proven sub-obligation.While in
general this can lead to missed proofs because of existential
variables (typed holes filled based on context), this has not
been an issue for the kinds of proofs we have worked with
so far.

Third we had to adapt our notion of search “depth” to
the structure of Coq proofs (in which a tactic can produce
multiple sub-obligations). A naïve tree search through the
Coq proof space will fail to exploit some of the structure of
sub-proofs in Coq.

Consider for example the following two proofs:
1. intros. simpl. eauto.
2. induction n. eauto. simpl.

At first glance, it seems that both of these proofs have a
depth of three. This means that a straightforward tree search
(which is blind to the structure of subproofs) would not find
either of these proofs if the depth limit were set to two.
However, there is a subtlety in the second proof above

which is important (and yet not visible syntactically). Indeed,
the induction n proof command actually produces two
obligations (“sub-goals” in the Coq terminology). These
correspond to the base case and the inductive case for the
induction on n. Then eauto discharges the first obligation
(the base case), and simpl discharges the second obligation
(the inductive case). So in reality, the second proof above
really only has a depth of two, not three.
Taking this sub-proof structure into account is important

because it allows Proverbot9001 to discover more proofs for
a fixed depth. In the example above, if the depth were set to
two, and we used a naïve search, we would not find either
of the proofs. However, at the same depth of two, a search
which takes the sub-proof structure into account would be
able to find the second proof (since this second proof would
essentially be considered to have a depth of two, not three).

7 Evaluation
This section shows that Proverbot9001 is able to successfully
solve many proofs. We also experimentally show that
Proverbot9001 improves significantly on the state-of-the-art
presented in previous work.
First, in Section 7.2, we compare experimentally to

previous work, by running both Proverbot9001 and the
CoqGym [38] project on CompCert, in several configurations

5
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outlined in the CoqGym paper. Next, in Section 7.3, we
experiment with using the weights learned from one project
to produce proofs in another. Then, in Section 7.4, we show
the “hardness” of proofs that Proverbot9001 is generally
able complete, using the length of the original solution as
proxy for proof difficulty. Finally, in Section 7.5, we measure
the predictor subsystem, without proof search. Additional
evaluation can be found in the appendix.
Experiments were run on twomachines. Machine A is an

Intel i7 machine with 4 cores, a NVIDIA Quadro P4000 8BG
256-bit, and 20 gigabytes of memory. Machine B is Intel Xeon
E5-2686 v4 machine with 8 cores, a Nvidia Tesla v100 16GB
4096-bit, and 61 gigabytes of memory. Experiment running
uses GNU Parallel [36].
During the development of Proverbot9001, we explored

many alternatives, including n-gram/bag-of-words represen-
tations of terms, a variety of features, and several coremodels
including k-nearest neighbors, support vector machines, and
several neural architectures. While we include here some
experiments that explore high-level design decisions (such
as training and testing on the same projects vs cross project,
working with and without solver-based tooling, modifying
the search depth and width, and running with and without
pre-processing), we also note that in the development of a
large system tackling a hard problem, it becomes intractable
to evaluate against every possible permutation of every
design decision. In this setting,we are still confident in having
demonstrated a system that works for the specific problem
of generating correctness proof with performance that
outperforms the state-of-the-art techniques by many folds.

7.1 Summary of Results
Proverbot9001, run using CoqHammer [10] and the default
configuration, is able to produce proofs for 28%of the theorem
statements in CompCert. This represents a 2.4X improvement
over the previous state-of-the-art. Without any external
tooling, Proverbot9001 can produce proofs for 19.36%, an
almost 4X improvement over previous state-of-the-art
prediction-based proofs. Our core prediction model is able
to reproduce the tactic name from the solution 32% of the
time; and when the tactic name is correct, our model is able
to predict the solution argument 89% of the time. We also
show that Proverbot9001 can be trained on one project and
then effectively predict on another project.

7.2 Experimental Comparison to PreviousWork
We tested Proverbot9001 end-to-end by training on the proofs
from 162 files from CompCert, and testing on the proofs from
13 different files. On our default configuration, Proverbot9001
solves 19.36% (97/501) of the proofs in our test set.
In addition to running Proverbot9001 on CompCert, we

ran the CoqGym [38] tool, which represents the state of the
art in this area, on the same dataset in several configurations.
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Figure 9. A comparison of Proverbot9001 and CoqGym’s
abilities to complete proofs. H stands for CoqHammer by
itself, as a single invocation; G stands for CoqGym by itself;
P stands for Proverbot9001 by itself; G+P stands for the
union of proofs done by G or P; GH stands for CoqGymwith
CoqHammer; PH stands for Proverbot9001with CoqHammer;
GH+PH stands for the union of proofs done by GH or PH.

To account for differences in training dataset, we ran
CoqGym with their original training schema, and also our
training schema, and reported the best of the two numbers.
CoqGym is intended to be combined with a solver based
proof-procedure, CoqHammer [10], which is run after every
proof command invocation. While our system was not
originally designed this way, we compare both systems
using CoqHammer, as well as both systems without. We also
compared our system to using CoqHammer on the initial goal
directly, which simultaneously invokes Z3 [12], CVC4 [6],
Vampire [25], and E Prover [34], in addition to attempting
to solve the goal using a crush-like tactic [9].

Figure 9 shows the proofs solved by various configurations.
The configurations are described in the caption. For all
configurations, we ran Proverbot9001 with a search depth
of 6 and a search width of 3 (see Section 9.5). Note that in
Figure 9 the bars for H, G, and GH are prior work. The bars
P, G+P and GH+PH are the ones made possible by our work.
When CoqHammer is not used, Proverbot9001 can com-

plete nearly 4 times the number of proofs that are completed
by CoqGym. In fact, even when CoqGym is augmented with
CoqHammer Proverbot9001 by itself (without CoqHammer)
still completes 39 more proofs, which is a 67% improvement
(and corresponds to about 8% of the test set). When enabling
CoqHammer in both CoqGym and Proverbot9001, we see
that CoqGym solves 48 proofs whereas Proverbot9001 solves
138 proofs, which is a 2.88X improvement over the state of art.

Finally, CoqGym and Proverbot9001 approaches are
complementary; both can complete proofs which the other
cannot. Therefore, one can combine both tools to produce
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more solutions than either alone. Combining CoqGym and
Proverbot9001, without CoqHammer, allows us to complete
100/501 proofs, a proof success rate of 20%. Combining
Proverbot9001 and CoqGym, each with CoqHammer, allows
us to solve 142/501 proofs, a success rate of 28%. It’s important
to realize that, whereas the prior state of the art was CoqGym
with CoqHammer, at 48 proofs, by combining CoqGym and
Proverbot9001 (both with CoqHammer), we can reach a
grand total of 142 proofs, which is a 2.96X improvement over
the prior state of art.

7.3 Cross-Project Predictions
To test Proverbot9001’s ability to make use of training across
projects, we used the weights learned from CompCert, and
and ran Proverbot9001 in it’s default configuration on three
other Coq projects from the Coq Contrib collection, concat,
float, and zfc.
concat is a library of constructive category theory proofs,

which showcases Coq proofs of mathematical concepts
instead of program correctness. The concat library is made
of 514 proofs across 105 files; Proverbot9001 was able to
successfully produce a proof for 91 (17.7%) of the extracted
theorem statements, without the use of CoqHammer.

float is a formalization of floating point numbers, made
of 742 proofs across 38 files; Proverbot9001 was able to
successfully produce a proof for 100 (13.48%) proofs.

zfc is a formalization of set theory made of 241 proofs
across 78 files; 41 (17.01%) were successfully completed.

The comparable number for CompCert was 19.36%.
These results demonstrate not only that Proverbot9001

can operate on proof projects in a variety of domains, but
more importantly that it can effectively transfer training
from one project to another. This would allow programmers
to use Proverbot9001 even in the initial development of a
project, if it had been previously trained on other projects.

7.4 Original Proof Length vs Completion Rate
In Figure 10 and Figure 11, we plot a histogram of the original
proof lengths (in proof commands) vs the number of proofs of
that length.We break down the proofs by (frombottom to top)
numberwe solve, numberwe cannot solve but still have unex-
plored nodes, and number run out of unexplored nodes before
finding a solution. Note that for the second class (middle bar),
it’s possible that increasing the search depth would allow us
to complete the proof. Figure 10 shows proofs of length 10 or
below, and Figure 11 shows all proofs, binned in sets of 10.
There are several observations that can be made. First,

most original proofs in our test set are less than 20 steps long,
with a heavy tail of longer proofs. Second, we do better on
shorter proofs. Indeed, 51% (256/501) of the original proofs in
our test set are ten proof commands or shorter, and of those
proofs, we can solve 35% (89/256), compared to our overall
solve rate of 19.36% (97/501). Third, we are in some cases
able to handle proofs whose original length is longer then

Figure 10. A histogram plotting the original proof lengths
in proof commands vs number of proofs of that length, in
three classes, for proofs with length 10 or less. From bottom
to top: proofs solved, proofs unsolved because of depth limit,
and proofs where our search space was exhausted without
finding a solution.

Figure 11.A histogram plotting the original proof lengths in
proof commands vs number of proofs of that length, in three
classes. From bottom to top: proofs solved, proofs unsolved
because of depth limit, and proofs where our search space
was exhausted without finding a solution. Note that most
proofs are between 0 and 10 proof commands long, with a
long tail of much longer proofs.

10. Indeed, 7 of the proofs we solve (out of 79 solved) had an
original length longer than 10. In fact, the longest proof we
solve is originally 25 proof commands long; linearized it’s
256 proof commands long. Our solution proof is 267 (linear)
proof commands long, comparable to the original proof, with
frequent case splits. The depth limit for individual obligations
in our search was 6 in all of these runs.

7.5 Individual Prediction Accuracy
We want to measure the effectiveness of the predictor
subsystem that predicts proof command pairs (the 𝑃 function
defined in Section 4). To do this, we broke the test dataset
down into individual (linearized) proof commands, and ran to
just before each proof command to get it’s prediction context.
Then we fed that context into our predictor, and compared
the result to the proof command in the original solution. Of
all the proof commands in our test dataset, we are able to
predict 28.66% (3784/13203) accurately. This includes the
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correct tactic and the correct argument. If we only test on
the proof commands which are in Proverbot9001’s prediction
domain, we are able to predict 39.25% (3210/8178) accurately.
During search, our proof command predictor returns the

top N tactics for various values of N, and all of these proof
commands are tried. Therefore, we also measured how often
the proof command in the original proof is in the top 3 predic-
tions, and the top 5 predictions. For all proof commands in the
data set, the tactic in the original proof is in our top 3 predic-
tions 38.93% of the time, and in our top 5 predictions 42.66% of
the time. If we restrict to proof commands in Proverbot9001’s
prediction domain, those numbers are 52.17% and 60.39%.

8 RelatedWork
8.1 Program Synthesis
Program Synthesis is the automatic generation of programs
from a high-level specification [17]. This specification can
come in many forms, the most common being a logical
formula over inputs and outputs, or a set of input-output
examples. Programs generated can be in a variety of
paradigms and languages, often domain-specific. Our tool,
Proverbot9001, is a program synthesis tool that focuses on
synthesis of proof command programs.
Several program synthesis works have used types exten-

sively to guide search. Some work synthesizes programs
purely from their types [18], while other work uses both a
type and a set of examples to synthesize programs [14, 31].
In Proverbot9001, the programs being synthesized use a term
type as their specification, however, the proof command
program itself isn’t typed using that type, rather it must
generate a term of that type (through search).
Further work in [27] attempts to learn from a set of

patches on GitHub, general rules for inferring patches
to software. This work does not use traditional machine
learning techniques, but nevertheless learns from data, albeit
in a restricted way.

8.2 Machine Learning for Code
Machine learning formodeling code is awell exploredarea [2],
as analternative tomore structuredmethodsofmodelingcode.
Several models have been proposed for learning code, such
as AST-like trees [30], long-term language models [11], and
probabilistic grammars [7]. Proverbot9001 does not attempt
to be so general, using a model of programs that is specific to
its domain, allowing us to capture the unique dependencies of
proof command languages.While themodel is simple, it is able
to model real proofs better than more general models in simi-
lar domains (see Section 7.2). Machine learning has been used
for various tasks such as code and patch generation [2, 7, 11],
program classification [30], and learning loop invariants [15].

8.3 Machine Learning for Proofs
While machine learning has previously been explored for
various aspects of proof writing, we believe there are still sig-
nificant opportunities for improving on the state-of-the-art,
getting closer and closer to making foundational verification
broadly applicable.
More concretely, work on machine learning for proofs

includes: using machine learning to speed up automated
solvers [4], developing data sets [5, 21, 38], doing premise
selection [1, 28], pattern recognition [24], clustering proof
data [23], learning from synthetic data [20], interactively
suggesting tactics [19, 23].
Finally, CoqGym attempts to model proofs with a fully

general proof command and termmodel expressing arbitrary
AST’s. We experimentally compare Proverbot9001’s ability
to complete proofs to that of CoqGym in detail in Section 7.2
There are also several important conceptual differences. First,
the argument model in CoqGym is not as expressive as the
one in Proverbot9001. CoqGym’s argumentmodel can predict
a hypothesis name, a number between 1 and 4 (which many
tactics in Coq interpret as referring to binders, for example
induction 2 performs induction on the second quantified
variable), or a random (not predicted using machine learning)
quantified variable in the goal. In contrast, the argument
model in Proverbot9001 can predict any token in the goal,
which subsumes the numbers and the quantified variables
that CoqGym can predict. Most importantly because Prover-
bot9001’smodel can predict symbols in the goal,which allows
effective unfolding, for example “unfold eq”. Second, in con-
trast to CoqGym, Proverbot9001 uses several hand-tuned fea-
tures for predicting proof commands. One key example is the
previous tactic, which CoqGym does not even encode as part
of the context. Third, CoqGym’s treatment of higher-order
proof commands like “;” is not as effective as Proverbot9001’s.
While neither system can predict “;”, Proverbot9001 learns
from “;” by linearizing them, whereas CoqGym does not.
There is also a recent line of work on doing end-to-end

proofs in Isabelle/HOL and HOL4 [5, 16, 32]. This work
is hard to experimentally compare to ours, since they use
different benchmark sets, proof styles, and proof languages.
Their most recent work [32] uses graph representations of
terms, which is a technique that we have not yet used, and
could adapt if proven successful.

Finally, there is also another approach to proof generation,
which is to generate the term directly using language
translation models [35], instead of using tactics; however
this technique has only been applied to small proofs due to
it’s direct generation of low-level proof term syntax.
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9 Appendix: Additional Evaluation
We now explore more detailed measurements about proof
production.

9.1 Argument Accuracy
Our argument predictionmodel is crucial to the success of our
system, and forms one of the main contributions of our work.
To measure it’s efficacy at improving search is hard, because
it’s impossible to separate it’s success in progressing a proof
from the success of the tactic predictor. However, we can
measure how it contributes to individual prediction accuracy.
On our test dataset, where we can predict the full proof

command in the original proof correctly 28.66% of the time,
we predict the tactic correctly but the argument wrong
32.24% of the time. Put another way, when we successfully
predict the tactic, we can predict the argument successfully
with 89% accuracy. If we only test on proof commands within
Proverbot9001’s prediction domain, where we correctly pre-
dict the entire proof command 39.25% of the time, we predict
the name correctly 41.01% of the time; that is, our argument
accuracy is 96% when we get the tactic right. It’s important
to note, however, that many common tactics don’t take any
arguments, and thus predicting their arguments is trivial.

9.2 Completion
Rate in Proverbot9001’s Prediction Domain

Proverbot9001 has a restricted model of proof commands:
it only captures proof commands with a single argument that
is a hypothesis identifier or a token in the goal. As result, it
makes sense to consider Proverbot9001 within the context
of proofs that were originally solved with these types of
proof commands. We will call proofs that were originally
solved using these types of proof commands proofs that are in
Proverbot9001’s prediction domain. There are 79 such proofs
in our test dataset (15.77% of the proofs in the test dataset),
and Proverbot9001 was able to solve 48 of them.
What is interesting is that Proverbot9001 is able to solve

proofs that are not in its prediction domain: these are proofs
that were originally performed with proof commands that
are not in Proverbot9001’s domain, but Proverbot9001
found another proof of the theorem that is in its domain.
This happened for 49 proofs (out of a total of 97 solved
proofs). Sometimes this is because Proverbot9001 is able
to find a simpler proof command which fills the exact role
of a more complex one in the original proof; for instance,
destruct (find_symbol ge id) in an original proof is
replaced by destruct find_symbol in Proverbot9001’s
solution. Other times it is because Proverbot9001 finds a
proof which takes an entirely different path than the original.
In fact, 31 of Proverbot9001’s 97 found solutions are shorter
than the original. It’s useful to note that while previous work
had a more expressive proof commandmodel, in practice it
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Figure 12.A comparison of the lengths of our found solution
proofs and the lengths of their original solution proofs.

was unable to solve as many proofs as Proverbot9001 could
in our more restricted model.

Together, these numbers indicate that the restricted tactic
model used by Proverbot9001 does not inhibit it’s ability
to solve proofs in practice, even when the original proof
solution used tactics outside of that model.

9.3 Original Proof Lengths vs Solution Lengths
In Figure 12, we compare, for proofs which Proverbot9001
was able to solve, the original (linearized) proof length and
our solution proof length. Dots above the diagonal dashed
line are cases where Proverbot9001’s proof is shorter than the
original proof (31 out of 97 proofs); dots below the diagonal
dashed line are cases where Proverbot9001’s proof is longer
than the original proof (53 out of 97 proofs); dots on the
diagonal dashed line are cases where Proverbot9001’s proof
is the same length as the original proof (13 out of 97 proofs);

While it is unsurprising that for many proofs our solution
is longer, the fact that for 31 proofs our solution was shorter
is unexpected. Since our proof command model forces us
into more primitive tactics than those used in the original
solutions, one would think that it should take us at least
as many proof commands to solve the same propositions.
However, since Proverbot9001 searches a large space for a
solution proof, it can often find correct sequences of proof
commands that are not apparent to human proof engineers.

9.4 Data Transformation
Crucial to Proverbot9001’s performance is its ability to learn
from data which is not initially in its proof command model,
but can be transformed into data which is. This includes
desugaring tacticals like now, splitting up multi-argument
tactics like unfold a, b into single argument ones, and
rearranging proofs with semicolons into linear series of proof
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commands. To evaluate howmuch this data transformation
contributes to the overall performance of Proverbot9001, we
disabled it, and instead filtered the proof commands in the
dataset which did not fit into our proof command model.

With data transformation disabled, and the default search
width (5) and depth (6), the proof completion accuracy of
Proverbot9001 is 15.57% (78/501 proofs). Recall that with data
transformation enabled as usual, this accuracy is 19.36%. This
shows that the end-to-end performance of Proverbot9001
benefits greatly from the transformation of input data,
although it still outperforms prior work (CoqGym) without it.
When we measure the individual prediction accuracy

of our model, trained without data transformation, we see
that its performance significantly decreases (16.32% instead
of 26.77%), demonstrating that the extra data produced by
preprocessing is crucial to training a good tactic predictor.

9.5 SearchWidths and Depths
Oursearchprocedurehas twomainparameters, a searchwidth,
and a search depth. The search width is howmany predictions
are explored at each context. The search depth is the longest
path from the root a single proof obligation state can have.
To explore the space of possible depths and widths, we

varied the depth and width, on our default configuration
without external tooling. With a search width of 1 (no search,
just running the first prediction), and a depth of 6, we can
solve 5.59% (28/501) of proofs in our test dataset. With a
search width of 2, and a depth of 6, we’re able to solve 16.17%
(81/501) of proofs, as opposed to a width of 3 and depth of
6, where we can solve 19.36% of proofs.
To explore variations in depth, we set the width at 3, and

varied depth. With a depth of 2, we were able to solve 5.19%
(26/501) of the proofs in our test set. By increasing the depth
to 4, we were able to solve 13.97% (70/501) of the proofs in
our test set. At a depth of 6 (our default), that amount goes
up to 19.36% (97/501).
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